Algorithms for Counting 2-SatSolutions and Colorings with Applications

نویسندگان

  • Martin Fürer
  • Shiva Prasad Kasiviswanathan
چکیده

An algorithm is presented for exactly solving (in fact, counting) the number of maximum weight satisfying assignments of a 2-Cnf formula. The worst case running time of O(1.246) for formulas with n variables improves on the previous bound of O(1.256) by Dahllöf, Jonsson, and Wahlström. The algorithm uses only polynomial space. As a consequence we get an O(1.246) time algorithm for counting maximum weighted independent sets. The above result when combined with a better partitioning technique for domains, leads to improved running times for counting the number of solutions of binary constraint satisfaction problems for all domain sizes. For large domain size d we approachO((0.601d)) improving the previous best bound of O((0.622d)). We further improve this bound for counting 3-colorings in a graph. The upper bound of O(1.770) for graphs with n vertices improves on the previous bound of O(1.788) by Angelsmark and Jonsson.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms to Approximately Count and Sample Conforming Colorings of Graphs

Conforming colorings naturally generalize many graph theory structures, including independent sets, vertex colorings, list colorings, H-colorings and adapted colorings. Given a multigraph G and a function F that assigns a forbidden ordered pair of colors to each edge e, we say a coloring C of the vertices is conforming to F if, for all e = (u, v), F (e) 6= (C(u), C(v)). We consider Markov chain...

متن کامل

An FPTAS for Counting Proper Four-Colorings on Cubic Graphs

Graph coloring is arguably the most exhaustively studied problem in the area of approximate counting. It is conjectured that there is a fully polynomial-time (randomized) approximation scheme (FPTAS/FPRAS) for counting the number of proper colorings as long as q ≥ ∆ + 1, where q is the number of colors and ∆ is the maximum degree of the graph. The bound of q = ∆ + 1 is the uniqueness threshold ...

متن کامل

Efficient algorithms for counting parameterized list H-colorings

We study the fixed parameter tractability of the counting version of a parameterization of the restrictive list H-coloring problem. The parameterization is defined by fixing the number of preimages of a subset C of the vertices in H through a weight assignment K on C. We show the fixed parameter tractability of counting the number of list (H,C,K)-colorings, for the case in which (H,C,K) is simp...

متن کامل

Improved FPTAS for Multi-spin Systems

We design deterministic fully polynomial-time approximation scheme (FPTAS) for computing the partition function for a class of multi-spin systems, extending the known approximable regime by an exponential scale. As a consequence, we have an FPTAS for the Potts models with inverse temperature β up to a critical threshold |β| = O( 1 ∆ ) where ∆ is the maximum degree, confirming a conjecture in [1...

متن کامل

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005